

WORKSHOP MOBILE ENVIRONMENTAL MONITORING MAY 4, 2021

IMEC\UGENT-WAVES MOBILE RF EMF EXPOSURE MEASUREMENTS

Wout.joseph@ugent.be

Sam Aerts, David Plets, Matthias Van den Bossche, Kenneth Deprez, Gunter Vermeeren, Luc Martens

Exposure assessment and modelling

IMEC/UGENT-WAVES

ELECTROMAGNETIC RADIATION PROJECTS

Radiation

- Developing a high-resolution electromagnetic radiation map of the city of Antwerp.
- Measuring electromagnetic radiation for all major wireless networks and frequencies that these networks use: GSM, UMTS, LTE(4G), 5G & Wi-Fi.
- In Coock Open city: node for 5G radiation exposure.

Developing a tool to predict the wireless coverage of any indoor environment for a given set of access points: the Wica Heuristic Indoor Propagation Prediction Tool (WHIPP).

Design EMF nodes: low-cost mobile nodes for radiation impact in cities

INTRODUCTION

- Enabled by:
 - Advances in network technology
 - Availibility of cheap sensor
- Strong interest in monitoring environmental parameters:
 - T, air quality, humidity, etc.
- But also need for monitoring realistic radio-frequency electromagnetic field (RF EMF) exposure

NEED FOR SPATIO-TEMPORAL RF EMF EXPOSURE (1)

- Realistic exposure assessment is of interest to:
 - Governmental agencies: risk assessment and communication; 5G
 - Epidemiological research
 - General public and workers
- WHO Research Agenda
 - Need for quantification of exposure to widespread and emerging radiofrequency (RF) sources
 - Public unfamiliarity with RF electromagnetic fields (EMF) leads to concerns

NEED FOR SPATIO-TEMPORAL RF EMF EXPOSURE (2)

Spatio-temporal EMF assessment:

- will provide data on population exposure and personal exposure
- but, is still a challenge:
 - Accurate exposure maps require EMF sensors densely distributed over an area (will even increase with the advent of 5G)
 - Personal exposimeters are not suitable: high cost, battery-powered devices
- Mobile sensors!

OBJECTIVES

- Design of fixed and mobile low-cost RF EMF sensors
- Deployment of an RF EMF exposure sensing network

Fixed EMF sensors

MOBILE EMF SENSORS

ADVANTAGES-DISADVANTAGES

+ positive

- High spatial sampling
- Large areas

- negative

- Not one fixed location: sample spread over multiple locations
- Lower accuracy

Spatial exposure assessment

- Collect measurement samples per 100 m² to 250 m² tile
- Data captured to complement spatial/spatiotemporal models from fixed sensor data
- Co-kriging

DESIGN OF EMF SENSORS V.

- Off-the-shelf components → low-cost
- Single antenna per frequency → increased isolation, but large size
- Interfacing to smart city network = USB
 - Fixed: towards gateway + LoRa
 - Mobile: towards Octa platform + LoRa /NB-IoT

Fixed (x 22)

5G too: 3.5 GHz and 700-800 MHz

SPECIFICATION OF EMF SENSORS FOR WSNs

Electrical	
Frequency bands	900 MHz: 925 - 960 MHz (GSM, UMTS) 1800 MHz: 1805 - 1880 MHz (GSM, LTE) 5G to 2100 MHz: 2110 - 2170 MHz (UMTS) 2450 MHz: 2400 – 2484 MHz (ISM, WiFi)
Polarization	Vertical
Detector	RMS
Sensitivity	5 mV/m
Dynamic range	70 dB
Sampling frequency (f _s): internal f _s output f _s	5 msec 1 sec
Mechanical	
Dimensions (I x w x h)	18 x 18 x 15 cm ³
Material casing	ABS
IP class	IP66/76
Interface	USB or SD card

GHENT

UNIVERSITY

CALIBRATION

- To determine effective antenna aperture (AA)
- In anechoic chamber

- 1. Measurement
 - Tx: horn antenna, V- and H-pol bij 90° rotation
 - Rx: (1) EMF sensor; (2) Narda NBM-550
- 2. Determination of $AA(\phi, \psi)$ for realistic polarization
- 3. Uncertainty = CI_{68} of antenna aperture

VALIDATION: FIELD TEST IN GHENT (1)

- EMF_node06
- Spectrum analyser + triaxial probe
- Freq: 900 MHz, 1800 MHz, 2100 MHz

	Electric field SA (V/m)	Electric field EMF_node06 (V/m)	Deviation (dB)
900 MHz	1.003	0.768	-1.160
1800 MHz	0.468	0.400	-0.676
2100 MHz	0.182	0.292	2.061
Total electric field.	1.121	0.914	-0.889

Deviations < 3dB

RF MONITORING NETWORK: MOBILE RESULTS

IMEC CITY OF THINGS

Mobile measurements

- ~ I year of data
- Snapped to streets (point per 20 m)
- Averaged per point

Car-mounted system

<u>OBJECTIVE</u>

Can RF measurements along roads, using a <u>car-mounted</u> <u>measurement system</u> used to characterize the exposure in the <u>area</u> encircled by those <u>roads</u>?

Advantages:

- Measurements might already exist (through spectrum use control agencies)
- Extensive areas can be covered

AREAS UNDER STUDY

Cambridge, UK

Divided in RING and INNER areas

AREAS UNDER STUDY

Amersfoort, The Netherlands

Divided in RING and INNER areas

MODELLING AND VALIDATION

The power density was interpolated (using *ordinary kriging*) on the innerarea grid bounded by the ring roads:

- Initial model uses only the ring data set (R)
- Model is up dated by adding inner-area (/) data, selected at random
- Maximum models are built using all available / (i.e., 75%) and R data

A random 25% subset of / is always retained for validation

Each interpolation stage was repeated 200 times using random subsets of I for interpolation (max. 75%) and validation (always 25%).

RESULTS: RELATIVE ERROR

- Rightmost point = initial model
- Error is reduced by adding samples from the inner area (i.e., distance between samples and validation points decreases)
- For most areas & signals,
 error is relatively low in any
 case

UNIVERSITY

DISCUSSION

- Overall, in areas the size and shape of Amersfoort-Residential
 - Proposed methodology can readily be applied if the measured ring route is closed

- Main strength = fact that mobile measurements spanning nationwide road grids can be readily available
 - on an annual basis
 - only need to be collected and interpolated
 - additional measurements might be needed

Other mobile measurements: on-body, drone, etc.

On-body- Measurements

Route in Ghent, Belgium

- 3 km
- urban area
- sample rate = 1 Hz

Measurements

	p ₂₅	p ₅₀	p ₇₅	p ₉₅
$\mathbf{S}_{inc} \left(\mu \mathbf{W} / \mathbf{m}^2 \right)$	21	47	120	830

Reference Levels* $4.6 \times 10^6 \mu \text{W/m}^2$

*general public

DRONE-BASED 3D PROPAGATION AND EXPOSURE MEASUREMENTS

CONCLUSIONS AND FUTURE

- Low-cost 5G EMF sensors for wireless sensor networks
- Deployed EMF exposure sensing network Antwerp:
 - mobile EMF sensors were installed in Antwerp
 - Modelling of route and inner area field exposure
 - Mobile: on car, on-body, app on mobile phone

Next:

- Mobile nodes: larger scale + 5G
- Exposure data in Digital Twin of imec
- Spatial and temporal analysis
- Combining EMF data from fixed and mobile data to assess the spatio-temporal EMF exposure in a smart city environment

Acknowledgment: This research is part of '**DENCITY**' and **COOCK-Open City**, VLAIO funded projects