
OPEN CITY

VALUABLE ENVIRONMENTAL INSIGHTS THROUGH AN OPEN CITY APPROACH

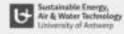
Mobile monitoring using airQmap: data analysis and lessons learned

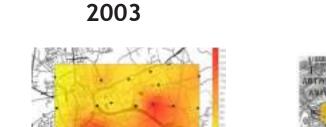
Jan Peters, Martine Van Poppel - VITO

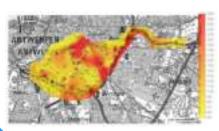
SPATIAL VARIABILITY OF AQ

Traditional measurement stations:

- Reference measurements
- Limited locations


 Large spatial variability in a city





SOME HISTORY OF MOBILE MONITORING AT VITO

2005

Car as platform + GPS

1s + bike as platform

today...

BC + data processing

useability

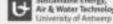
flexible

data processing

methodology Visualisation

Automatic data proc. and volunteers

airQmap Aeroflex



THE AIRQMAP APPROACH

AIRQMAP

air map is a tool to collect large amounts of mobile BC data and process them into street-level BC exposure maps.

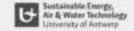
Measurement devices: GPS and microAeth

Easy-to-use software

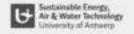
Scientific Methodology

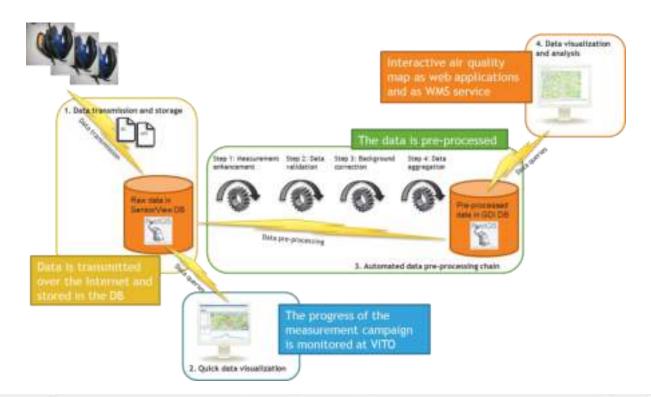
Automated dataprocessing

Web application BC maps

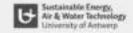

www.airqmap.com

AIRQMAP MEASUREMENT DEVICE AND POLLUTANT

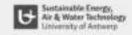

- Black Carbon (BC)
 - Indicator for combustion-related aerosol
 - Associated with cardiovascular and cardiopulmonary health effects
 - WHO claims: "Studies of short-term health effects suggest that BC is a better indicator of harmful particulate substances from combustion sources (especially traffic) than undifferentiated particulate matter (PM) mass."
- MicroAeth
 - Not a sensor but a 'medium range' (portable) instrument
 - I sec time resolution (signal noise postprocessing)



AIRQMAP DATA PROCESSING



AIRQMAP **STANDARD** METHODOLOGY


- BC measurements
 - Algorithm for noise reduction, outlier removal
- Trajectory
 - Fixed route by bike or foot: representative for exposure of cyclist or pedestrians
- Repeated measurements at fixed times
 - Dependent of the research question e.g. hot spots at peak hours
- Data aggregation over time and space
 - 30m spatial resolution
 - Visualisation of result (no interpolation): min # of datapoints
- Result
 - Spatial variability, no evaluation of limit values

NUMBER OF REPETITIONS

Dament had available of Description

Atmospheric Environment

Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive

DESCRIPTION OF THE PERSON NAMED IN

Join Van det Breufse 3.5", Jan Pewer ", Jan Verragnen ", Dick Burnhöusen) ', ion Thrums: ", Bernard Dr Garts"

"All Control System for In Control States and Park States."

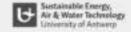
Table 2

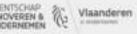
Results of the data experiments: required number of repetitions using a deviation of 25 and 50% at different levels of spatial aggregation: the entire route (route 1), different streets (for abbreviations see Table 1) and 20 and 50 m segments (10th, 50th and 90th petcentiles are given), and using different processing methods: arithmetic mean ('standard'), trimmed mean ('trimmed'), with a background normalisation ('background') and the combination of both ('both'). The minimum for each spatial level and for 2S and 50% is shown in italies.

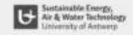
	25%			50%				
	Standard	Trimmed	Background	Both	Standard	Trimmed	Background	both
Route	17	18	11	12	14	:5	3	- 4
Street level	With the							
PM	18	20	13	14	- 5	- 6	3	4
DP	18	19	14	14	5	. 5	4	4
WO	63	81	60	37	16	311	15	9
KB	63 82	GIL	75	67	21	10	20	9
CB	66	50	62	42	18	8	18	7
KA	44	34	40	25	12	7	12	5
20 m segment	Di .							
10%	31	703	26	.24	M.	6	7	5
.50%	59	30 54	52	45	35	10	13	8
90%	364	7.12	156	106	44	13	43	12
50 m segmen	B CONTRACT							
10%	33	31	29	24	8	7	- 6	5
50%	57	52	50	42	14	10	13	8
90%	141	102	50 141	94	39	13	40	11

25% and 50% Standard deviation

=>Data processing


=>Spatial resolution

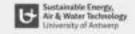



AIRQMAP

- The airQmap approach can be used to analyze mobile data in smart city context
- Other pollutants
 - Some tests performed with PM sensors, UFP
- Other platform
 - Some tests with a car/mobile van
- Opportunistic measurements
 - Some tests with city guards
- ...

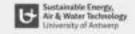
IMPACT OF DAY

7/11 (weekday)

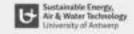


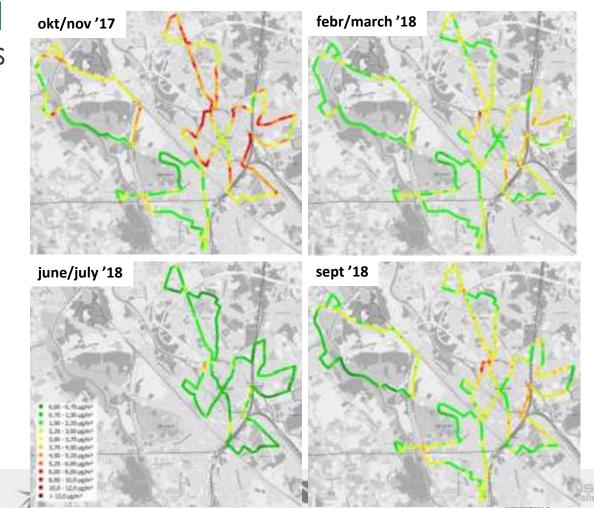
IMPACT OF TIME OF DAY

afternoon



TIME-SPACE SYNCHRONIZATION, RESPONSE OF SENSORS

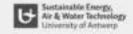




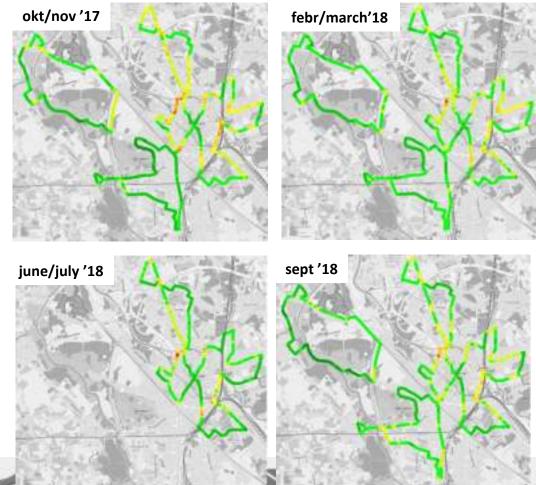
SEASONAL DIFFERENCES

SEASONAL DIFFERENCES

Summary statistics per campaign and BC concentrations at fixed monitoring stations


	Min.	1 st Qu.	Median	Mean	3 rd Qu.	Max.	VMM virtual Traffic station	_	
Campaign 1	1.0	2.4	3.3	3.7	4.7	12.4	3.3		Max concentration
Campaign 2	1.3	2.0	2.3	2.5	2.9	10.5	2.4		
Campaign 3	0.5	0.9	1.2	1.4	1.7	6.2	1.4		Min concentration
Campaign 4	0.5	1.8	2.5	2.5	3.1	8.3	2.5		
					Yea	arly avera	ge 2017: 1.9		

- Rescaling based on data on 'virtual' traffic station
 ratio = yearly average/campaign average @VMM traffic station
- Aggregation of different campaigns based on weighed average
 (weighing factor ~ frequency of occurrence of the average BC concentration)



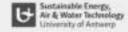
SEASONAL DIFFERENCES

UNIVERSITY

MEASUREMENT SET-UP OPPORTUNISTIC VERSUS DEDICATED MEASUREMENTS

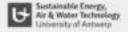
DEDICATED MEASUREMENTS VERSUS OPPORTUNISTIC APPROACH

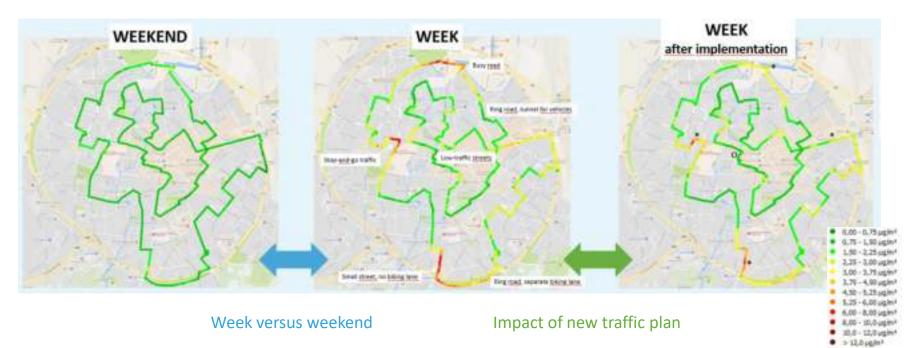
- Dedicated measurement set-up
 - Measurement route is defined (in function of question)
 - At specific time(s) of day
 - Gives a representative picture of these moments in time
 - Easy to compare different locations
 - Additional effort to collect data
- Opportunistic measurements
 - Measurements are performed using a 'platform'
 - Collection of spatio-temporal data
 - Additional effort/attention to data processing
 - Risk of sampling bias



DATA PROCESSING OF OPPORTUNISTIC MEASUREMENTS

- Data collection and aggregation
 - Based on opportunistic measurements (city wardens)
 - 50 m road segments, Ih time
- Land Use Regression model (annual average)
 - Spatial predictor variables: traffic, land use, street geometry,...
 - Temporally adjusted BC values (annual average) additive and multiplicative method
- Spatio-temporal Land Use Regression model
 - Time-dependent variables as predictor variables
 - Real time dynamic pollution map: model update based on recent collected data



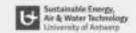


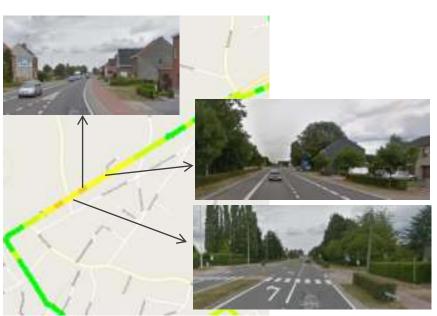
SOME CASE STUDIES

WHAT CAN WE DO WITH MOBILE MEASUREMENTS:

IMPACT OF NEW TRAFFIC PLANS

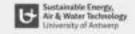
Impact of traffic plans, evaluated with **airOmap** by citizens in Leuven





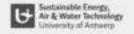
IMPACT OF STREET INFRASTRUCTURE ON EXPOSURE

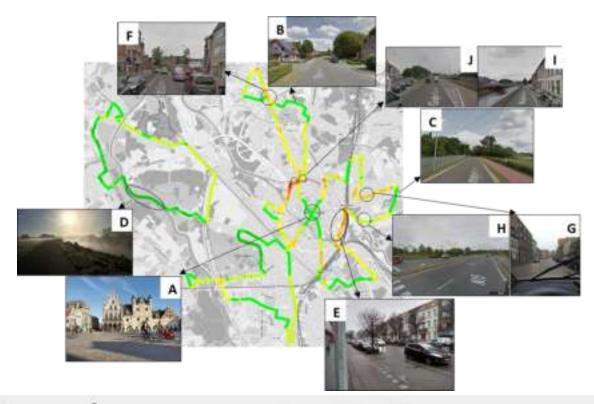
Impact of orientation of biking path


Impact of street characteristics: ventilation and distance

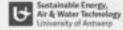
INTERACTIONS WITH CITIZENS

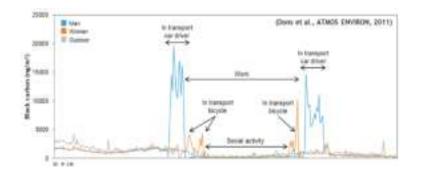
- Citizen Observatory (CO) "Meet Mee Mechelen"
- As part of two Citizen science projects GroundTruth 2.0 and Flamenco
- Involve citizens in AQ measurements and management
- A good data interpretation and feedback is needed
 - Low concentrations are easier to explain than high ones © ?
 - It's all about the scale!

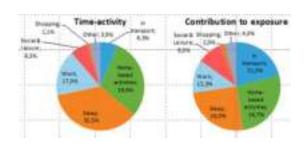




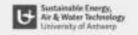
DETECTION OF HOT SPOTS/IMPACT OF TRAFFIC ON AQ

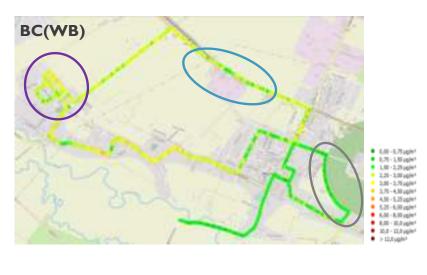


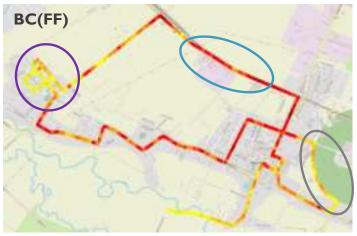




PERSONAL EXPOSURE TO AIR POLLUTION



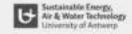




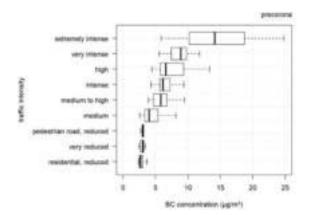
IMPACT OF WOOD BURNING

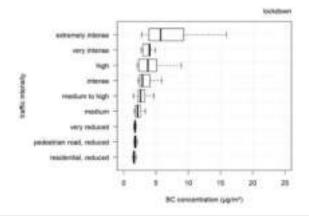
Impact of wood burning on AQ by mobile measurements:

- BC at different wavelengths:
 - BC(WB) : wood burning
 - BC(FF): fossil fuel


Result show:

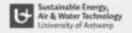
- different patterns for wood burning compared to fossil
- Sources identified

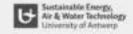




IMPACT OF REDUCED TRAFFIC DUE TO COVID 19

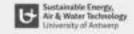

- Impact of traffic due to COVID-19
- Case study Romania
- Background correction
 - Concentration at park




CONCLUSIONS

- A mobile measurement approach can be used to assess local differences in air quality
- Repeated measurements are needed to get representative results
- Data processing needs to take into account different background concentrations
 - When collecting data at different time at different locations
 - When comparing scenarios
- Data collection process needs attention
- Setting up ICT infrastructure and Apps is important in data-collection and processing
- Selection of sensors and parameters
 - Different sensors with different performance, calibration
 - What are we looking for? What do we want to measure?

NEXT STEPS


- Expertise of airQmap and methodology can be applied in smart city mobile applications
- Apply knowledge for use cases:
 - Set-up
 - Data processing
 - Data interpretation
 - Calibration
- Contact:

<u>martine.vanpoppel@vito.be</u> – <u>jan.peters@vito.be</u>

